
www.manaraa.com

ar
X

iv
:c

s/
02

12
00

4v
1

 [
cs

.D
B

]
 5

 D
ec

 2
00

2

Minimal-Change Integrity Maintenance Using

Tuple Deletions∗

Jan Chomicki†

University at Buffalo

Dept. CSE

chomicki@cse.buffalo.edu

Jerzy Marcinkowski

Wroclaw University

Instytut Informatyki

jma@ii.uni.wroc.pl

1st February 2008

Abstract

We address the problem of minimal-change integrity maintenance in the context
of integrity constraints in relational databases. We assume that integrity-restoration
actions are limited to tuple deletions. We identify two basic computational issues: re-
pair checking (is a database instance a repair of a given database?) and consistent
query answers [ABC99] (is a tuple an answer to a given query in every repair of a
given database?). We study the computational complexity of both problems, delineat-
ing the boundary between the tractable and the intractable. We consider denial con-
straints, general functional and inclusion dependencies, as well as key and foreign key
constraints. Our results shed light on the computational feasibility of minimal-change
integrity maintenance. The tractable cases should lead to practical implementations.
The intractability results highlight the inherent limitations of any integrity enforce-
ment mechanism, e.g., triggers or referential constraint actions, as a way of performing
minimal-change integrity maintenance.

1 Introduction

Inconsistency is a common phenomenon in the database world today. Even though integrity
constraints successfully capture data semantics, the actual data in the database often fails
to satisfy such constraints. This may happen because the data is drawn from a variety of
independent sources (as in data integration [Len02]) or is involved in complex, long-running
activities like workflows.

How to deal with inconsistent data? The traditional way is not to allow the database to
become inconsistent by aborting updates or transactions leading to integrity violations. We
argue that in present-day applications this scenario is becoming increasingly impractical.
First, if a violation occurs because of data from multiple, independent sources being merged
[LM96], there is no single update responsible for the violation. Moreover, the updates have

∗Research supported by NSF Grant IIS-0119186.
†Contact author. Address: Dept. CSE, 201 Bell Hall, Univ. at Buffalo, Buffalo, NY 14260-2000. Fax:

(716) 645-3464. Phone: (716) 645-3180, ext.103.

1

http://arXiv.org/abs/cs/0212004v1

www.manaraa.com

typically already committed. For example, if we know that a person should have a single
address but multiple data sources contain different addresses for the same person, it is not
clear how to fix this violation through aborting some update. Second, the data may have
become inconsistent through the execution of some complex activity and it is no longer
possible to trace the inconsistency to a specific action.

In the context of triggers or referential integrity, more sophisticated methods for handling
integrity violations have been developed. For example, instead of being aborted an update
may be propagated. In general, the result is at best a consistent database state, typically
with no guarantees on its distance from the original, inconsistent state (the research reported
in [LML97] is an exception).

In our opinion, integrity restoration should be a separate process that is executed after an
inconsistency is detected. The restoration should have a minimal impact on the database
by trying to preserve as many tuples as possible. This scenario is called from now on
minimal-change integrity maintenance.

One can interpret the postulate of minimal change in several different ways, depending
on whether the information in the database is assumed to be correct and complete. If the
information is complete but not necessarily correct (it may violate integrity constraints), the
only way to fix the database is by deleting some parts of it. If the information is both incor-
rect and incomplete, then both insertions and deletions should be considered. In this paper
we focus on the first case. Since we are working in the context of the relational data model,
we consider tuple deletions. Such a scenario is common in data warehouse applications where
dirty data coming from many sources is cleaned in order to be used as a part of the ware-
house itself. On the other hand, in some data integration approaches, e.g.,[Len02, LLR02],
the completeness assumption is not made. For large classes of constraints, e.g., denial con-
straints, the restriction to deletions has no impact, since only deletions can remove integrity
violations. We return to the issue of minimal change in Section 2.

We claim that a central notion in the context of integrity restoration is that of a repair
[ABC99]. A repair is a database instance that satisfies integrity constraints and minimally
differs from the original database (which may be inconsistent). Because we consider only
tuple deletions as ways to restore database consistency, the repairs in our framework are
subsets of the original database instance.

The basic computational problem in this context is repair checking, namely checking
whether a given database instance is a repair of of the original database. The complexity
of this problem is studied in the present paper. The PTIME algorithms for repair checking
given here can be easily adapted to non-deterministically compute repairs (as we show).

Sometimes when the data is obtained online from multiple, autonomous sources, it is
not possible to restore the consistency. In that case one has to settle for computing, in
response to queries, consistent query answers [ABC99], namely answers that are true in
every repair of the given database. Such answers constitute a conservative “lower bound”
on the information present in the database. The problem of computing consistent query
answers is the second computational problem studied in the present paper. We note that
the notion of consistent query answer proposed in [ABC99] has been used and extended,
among others, in [ABC00, GGZ01, LLR02, ABC+03, Wij03]. However, none of these papers
presents a comprehensive and complete computational complexity picture.

We describe now the setting of our results. We analyze the computational complexity

2

www.manaraa.com

of repair checking and consistent query answers along several different dimensions. We
characterize the impact of the following parameters:

• the class of queries: quantifier-free queries, conjunctive queries, and simple conjunc-
tive queries (conjunctive queries without repeated relation symbols).

• the class of integrity constraints: denial constraints, functional dependencies (FDs),
inclusion dependencies (INDs), and FDs and INDs together. We also consider practi-
cally important subclasses of FDs and INDs: key functional dependencies and foreign
key constraints [Dat81].

• the number of integrity constraints.

As a result we obtain several new classes for which both repair checking and consistent
query answers are in PTIME:

• queries: ground quantifier-free, constraints: arbitrary denial;

• queries: closed simple conjunctive, constraints: functional dependencies (at most one
FD per relation);

• queries: ground quantifier-free or closed simple conjunctive, constraints: key func-
tional dependencies and foreign key constraints, with at most one key per relation.

Additionally, we show that repair checking (but not consistent query answers) are in PTIME
for arbitrary FDs and acyclic INDs. The results obtained are tight in the sense that relaxing
any of the above restrictions leads to co-NP-hard problems, as we prove. (This, of course,
does not preclude the possibility that introducing additional, orthogonal restrictions could
lead to more PTIME cases.) To complete the picture, we show that for arbitrary sets of FDs
and INDs repair checking is co-NP-complete and consistent query answers is Πp

2-complete.
Our results shed light on the computational feasibility of minimal-change integrity main-

tenance. The tractable cases should lead to practical implementations. The intractability
results highlight the inherent limitations of any integrity enforcement mechanism, e.g., trig-
gers or referential constraint actions [MS02, LML97], as ways of performing minimal-change
integrity maintenance using tuple deletions.

The plan of the paper is as follows. In Section 2, we define the basic concepts. In
Section 3, we consider denial constraints. In Section 4, we discuss INDs together with FDs.
In Section 5, we summarize related research and in Section 6 we draw conclusions and
discuss future work. An earlier version of the results in Section 3 was presented in [CM02].

2 Basic Notions

In the following we assume we have a fixed relational database schema R consisting of
a finite set of relations. We also have a fixed, infinite database domain D, consisting
of uninterpreted constants, and a numeric domain N . Those domains are disjoint. The
database instances can be seen as finite, first-order structures over the given schema, that
share the domain D. Every attribute in U is typed, thus all the instances of R can contain
only elements either of D or of N in a single attribute. Since each instance is finite, it

3

www.manaraa.com

has a finite active domain which is a subset of D ∪ N . As usual, we allow the standard
built-in predicates over N (=, 6=, <,>,≤,≥) that have infinite, fixed extensions. With all
these elements we can build a first order language L.

2.1 Integrity Constraints

Integrity constraints are closed first-order L-formulas. In the sequel we will denote relation
symbols by P1, . . . , Pm, tuples of variables and constants by x̄1, . . . , x̄m, and a conjunction
of atomic formulas referring to built-in predicates by ϕ.

In this paper we consider the following basic classes of integrity constraints:

1. Denial constraints: L-sentences

∀x̄1, . . . x̄k. ¬[P1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ϕ(x̄1, . . . , x̄m)].

2. Functional dependencies (FDs): L-sentences

∀x̄1x̄2x̄3x̄4x̄5. [P (x̄1, x̄2, x̄4) ∧ P (x̄1, x̄3, x̄5) ⇒ x̄2 = x̄3],

where the x̄i are sequences of distinct variables. A more familiar formulation of the
above FD is X → Y where X is the set of attributes of P corresponding to x̄1,
and Y the set of attributes of P corresponding to x̄2 (and x̄3). Clearly, functional
dependencies are a special case of denial constraints.

3. Inclusion dependencies (INDs): L-sentences

∀x̄1 ∃x̄3. [Q(x̄1) ⇒ P (x̄2, x̄3)],

where the x̄i are sequences of distinct variables with x̄2 contained in x̄1, and P,Q

database relations. Again, this is often written as Q[Y] ⊆ P [X] where X (resp. Y) is
the set of attributes of P (resp. Q) corresponding to x̄2. If P and Q are clear from
the context, we omit them and write the dependency simply as Y ⊆ X. Full inclusion
dependencies are those expressible without the existential quantifiers.

Given a set of FDs and INDs IC over a relation P and X which is a key of P w.r.t. IC,
we say that each FD X → Y ∈ IC is a key dependency and each IND Q[Y] ⊆ P [X] ∈ IC

is a foreign key constraint. If, additionally, X is the primary key of P , then both kinds of
dependencies are termed primary.

Definition 1 Given a database instance r of R and a set of integrity constraints IC , we say
that r is consistent if r � IC in the standard model-theoretic sense; inconsistent otherwise.

4

www.manaraa.com

2.2 Repairs

Given a database instance r, the set Σ(r) of facts of r is the set of ground atomic formulas
{P (ā) | r � P (ā)}, where P is a relation name and ā a ground tuple.

Definition 2 The distance ∆−(r, r′) between data-base instances r and r′ is defined as
∆−(r, r′) = (Σ(r) − Σ(r′)).

Definition 3 For the instances r, r′, r′′ , r′ ≤r r′′ if ∆−(r, r′) ⊆ ∆−(r, r′′), i.e., if the
distance between r and r′ is less than or equal to the distance between r and r′′.

Definition 4 Given a set of integrity constraints IC and database instances r and r′, we
say that r′ is a repair of r w.r.t. IC if r′ � IC and r′ is ≤r-minimal in the class of database
instances that satisfy IC.

If r′ is a repair of r, then Σ(r′) is a maximal consistent subset of Σ(r). We denote
by RepairsIC(r) the set of repairs of r w.r.t. IC. This set is nonempty, since the empty
database instance satisfies every set of FDs and INDs.

2.3 Queries

Queries are formulas over the same language L as the integrity constraints. A query is
closed (or a sentence) if it has no free variables. A closed query without quantifiers is also
called ground. Conjunctive queries [CM77, AHV95] are queries of the form

∃x̄1, . . . x̄m. [P1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ϕ(x̄1, . . . , x̄m)].

If a conjunctive query has no repeated relation symbols, it is called simple.
The following definition is standard:

Definition 5 A tuple t̄ is an answer to a query Q(x̄) in an instance r iff r |= Q(t̄).

2.4 Consistent query answers

Given a query Q(x̄) to r, we want as consistent answers those tuples that are unaffected
by the violations of IC , even when r violates IC .

Definition 6 [ABC99] A tuple t̄ is a consistent answer to a query Q(x̄) in a database
instance r w.r.t. a set of integrity constraints IC iff t̄ is an answer to query Q(x̄) in every
repair r′ of r w.r.t. IC. An L-sentence Q is consistently true in r w.r.t. IC if it is true in
every repair of r w.r.t. IC. In symbols:

r |=IC Q(t̄) ⇐⇒ r′ |= Q(t̄) for every repair r′ of r w .r.t. IC.

Note: If the set of integrity constraints IC is clear from the context, we omit it for
simplicity.

5

www.manaraa.com

2.5 Examples

Example 1 Consider the following instance of a relation Person

Name City Street

Brown Amherst 115 Klein
Brown Amherst 120 Maple
Green Clarence 4000 Transit

and the functional dependency Name → City Street . Clearly, the above instance does not
satisfy the dependency. There are two repairs: one is obtained by removing the first tuple,
the other by removing the second. The consistent answer to the query Person(n, c, s) is just
the tuple (Green,Clarence,4000 Transit). On the other hand, the query ∃s[Person(n, c, s)]
has two consistent answers: (Brown,Amherst) and (Green,Clarence). Similarly, the query

Person(Brown,Amherst, 115 Klein) ∨ Person(Brown,Amherst, 120 Maple)

has true as the consistent answer. Notice that for the last two queries the approach based
on removing all inconsistent tuples and evaluating the original query using the remaining
tuples gives different, less informative results.

Example 2 Consider a database with two relations Employee(SSN,Name) and Manager(SSN).
There are functional dependencies SSN → Name and Name → SSN , and an inclusion
dependency Manager[SSN] ⊆ Employee[SSN]. The relations have the following instances:

Employee

SSN Name

123456789 Smith
555555555 Jones
555555555 Smith

Manager

SSN

123456789
555555555

The instances do not violate the IND but violate both FDs. If we consider only the FDs,
there are two repairs: one obtained by removing the third tuple from Employee, and the
other by removing the first two tuples from the same relation. However, the second repair
violates the IND. This can be fixed by removing the first tuple from Manager. So if we
consider all the constraints, there are two repairs:

Employee

SSN Name

123456789 Smith
555555555 Jones

Manager

SSN

123456789
555555555

and

Employee

SSN Name

555555555 Smith

Manager

SSN

555555555

6

www.manaraa.com

Example 3 We give here some examples of denial constraints. Consider the relation Emp
with attributes Name, Salary, and Manager, with Name being the primary key. The con-
straint that no employee can have a salary greater that that of her manager is a denial
constraint:

∀n, s,m, s′,m′. ¬[Emp(n, s,m) ∧ Emp(m, s′,m′) ∧ s > s′].

Similarly, single-tuple constraints (CHECK constraints in SQL2) are a special case of denial
constraints. For example, the constraint that no employee can have a salary over $200000
is expressed as:

∀n, s,m. ¬[Emp(n, s,m) ∧ s > 200000].

Note that a single-tuple constraint always leads to a single repair which consists of all the
tuples of the original instance that satisfy the constraint.

2.6 Different notions of repair

The original notion of repair introduced in [ABC99] required that the symmetric differ-
ence between a database and its repair be minimized. As explained in the introduction,
this was based on the assumption that the database may be not only inconsistent but also
incomplete. The notion of repair pursued in the current paper (Definition 4) reflects the
assumption that the database is complete. There are several reasons for this change of per-
spective. First, for denial constraints integrity violations can only be removed by deleting
tuples, so the different notions of repair in fact coincide in this case. Therefore, all the
results presented in Section 3 are not affected by the restriction of the repairs to be subsets
of the original instance. Insertions can restore integrity only for inclusion dependencies (or,
in general for tuple-generating dependencies [AHV95]). Second, even for inclusion depen-
dencies current language standards like SQL:1999 allow only deletions in their repertoire
of referential integrity actions. Third, disallowing insertions significantly strengthens the
notion of consistent query answer, as demonstrated by the following example.

Example 4 Consider a database schema consisting of two relations P (AB) and S(C). The
integrity constraints are: the FD A→ B and the IND B ⊆ C. Assume the database instance
r1 consists of p = {(a, b), (a, c)} and s = {b}. Then under Definition 4 there is only one
repair r2 consisting of p′ = {(a, b)} and s′ = s. On the other hand, under the definition of
[ABC99], there is one more repair r3 consisting of p′′ = {(a, c)} and s′′ = {b, c}. Therefore,
in the first case P (a, b) is consistently true in the original instance r1, while in the second
case it is not. Note that P (a, c) is not consistently true in r1 either. Thus, in the second
case P (a, b) and P (a, c) are treated symmetrically from the point of view of consistent query
answering. However, intuitively there is a difference between them. Think of A being the
person’s name, B her address and S a list of valid addresses. Then only under Definition
4 would the single valid address be returned as a consistent answer.

Finally, insertions may lead to infinitely many repairs which are, moreover, not very intuitive
as ways of fixing an inconsistent database.

Example 5 In Example 2, allowing insertions gives additionally infinitely many repairs of
the form

7

www.manaraa.com

Employee

SSN Name

123456789 c

555555555 Smith

Manager

SSN

123456789
555555555

where c is an arbitrary string different from Smith.

2.7 Computational Problems

Assume a class of databases D, a class of queries Q and a class of integrity constraints C
are given. We study here the complexity of the following problems:

• repair checking, i.e., the complexity of the set

BIC = {(r, r′) : r, r′ ∈ D ∧ r′ ∈ Repairs IC(r)},

• consistent query answers, i.e., the complexity of the set

DIC,Φ = {r : r ∈ D ∧ r |=IC Φ},

for a fixed sentence Φ ∈ Q and a fixed finite set IC ∈ C of integrity constraints. This
formulation is called data complexity [CH80, Var82], since it captures the complexity of a
problem as a function of the number of tuples in the database instance only. The database
schema, the query and the integrity constraints are assumed to be fixed.

It is easy to see that even under a single key FD, there may be exponentially many
repairs and thus the approach to computing consistent query answers by generating and
examining all repairs is not feasible.

Example 6 Consider the functional dependency A→ B and the following family of relation
instances rn, n > 0, each of which has 2n tuples (represented as columns) and 2n repairs:

rn
A a1 a1 a2 a2 · · · an an

B b0 b1 b0 b1 · · · b0 b1

We establish below a general relationship between the problems of repair checking and
consistent query answers.

Theorem 1 In the presence of foreign key constraints, the problem of repair checking is
logspace-reducible to the complement of the problem of consistent query answers.

Proof. We discuss here the case of the database consisting of a single relation R0. Assume r
is the given instance of R0 and r′ is an another instance of R0 satisfying the set of integrity
constraints IC. We define a new relation S0 having the same attributes as R0 plus an
additional attribute Z. Consider an instance s of S0 built as follows:

• for every tuple (x1, . . . , xk) ∈ r′, we add the tuple (x1, . . . , xk, c1) to s;

• for every tuple (x1, . . . , xk) ∈ r − r′, we add the tuple (x1, . . . , xk, c2) to s.

Consider also another relation P having a single attribute W , and a foreign key constraint
i0 : P [W] ⊆ S0[Z]. The instance p of P consists of a single tuple c2. We claim that P (c2)
is consistently true in the database instance consisting of s and p w.r.t. IC ∪ {i0} iff r′ is
not a repair of r w.r.t. IC.

8

www.manaraa.com

3 Denial constraints

3.1 Conflict hypergraph

Given a set of denial constraints F and an instance r, all the repairs of r with respect to
F can be succinctly represented as the conflict hypergraph. This is a generalization of the
conflict graph defined in [ABC01] for FDs only.

Definition 7 The conflict hypergraph GF,r is a hypergraph whose set of vertices is the set
Σ(r) of facts of an instance r and whose set of edges consists of all the sets

{P1(t̄1), P2(t̄2), . . . Pl(t̄l)}

such that P1(t̄1), P2(t̄2), . . . Pl(t̄l) ∈ Σ(r), and there is a constraint

∀x̄1, x̄2, . . . x̄l. ¬[P1(x̄1) ∧ P2(x̄2) ∧ . . . ∧ Pl(x̄l) ∧ ϕ(x̄1, x̄2, . . . x̄l)]

in F such that P1(t̄1), P2(t̄2), . . . Pl(t̄l) violate together this constraint, which means that
there exists a substitution ρ such that ρ(x̄1) = t̄1, ρ(x̄2) = t̄2, . . . ρ(x̄l) = t̄l and that
ϕ(t̄1, t̄2, . . . t̄l) is true.

Note that there may be edges in GF,r that contain only one vertex. Also, the size of the
conflict hypergraph is polynomial in the number of tuples in the database instance.

By an independent set in a hypergraph we mean a subset of its set of vertices which
does not contain any edge.

Proposition 1 Each repair of r w.r.t. F corresponds to a maximal independent set in
GF,r.

Proposition 1 yields the following result:

Proposition 2 [ABC+03] For every set of denial constraints F and L-sentence Φ, BF is
in PTIME and DF,Φ is in co-NP.

Note that the repairs of an instance r can be computed nondeterministically by picking
a vertex of GF,r which does not belong to a single-vertex edge and adding vertices that do
not result in the addition of an entire edge.

3.2 Positive results

A set of constraints is generic if it does not imply any ground literal. The results in [ABC99]
imply the following:

Proposition 3 For every generic set F of binary denial constraints and full inclusion
dependencies, and quantifier-free L-sentence

Φ = P1(x̄1) ∧ · · ·Pm(x̄m) ∧ ¬Pm+1(x̄m+1) ∧ · · · ∧ ¬Pn(x̄n) ∧ ϕ(x̄1, . . . , x̄n),

DF,Φ is in PTIME.

9

www.manaraa.com

The techniques in [ABC99] do not generalize to non-binary constraints, or queries in-
volving disjunction or quantifiers. However, non-binary constraints and disjunctions do not
necessarily lead to intractability, as shown by the following theorem.

Theorem 2 For every set F of denial constraints and quantifier-free L-sentence Φ, DF,Φ

is in PTIME.

Proof. We assume the sentence is in CNF, i.e., of the form Φ = Φ1 ∧Φ2 ∧ . . .Φl, where each
Φi is a disjunction of ground literals. Φ is true in every repair of r if and only if each of the
clauses Φi is true in every repair. So it is enough to provide a polynomial algorithm which
will check if a given ground clause is consistently true.

It is easier to think that we are checking if a ground clause true is not consistently true.
This means that we are checking, whether there exists a repair r′ in which ¬Φi is true for
some i. But ¬Φi is of the form P1(t̄1)∧P2(t̄2)∧ . . .∧Pm(t̄m)∧¬Pm+1(t̄m+1)∧ . . .∧¬Pn(t̄n),
where the t̄j’s are tuples of constants. WLOG, we assume that all the facts in the set
{P1(t̄1), . . . , Pn(t̄n))} are mutually distinct.

The nonderministic algorithm selects for every j, m+1 ≤ j ≤ n, t̄j ∈ r, an edge Ej ∈ GF,r

such that t̄j ∈ Ej. Additionally the following global condition needs to be satisfied: there
is no edge E ∈ GF,r such that E ⊆ r′ where

r′ = {t̄1, . . . , t̄m} ∪
⋃

m+1≤j≤n,t̄j∈r

(Ej − {t̄j}).

If the selection succeeds, then a repair in which ¬Φi is true can be built by adding to
r′ new tuples from r until the set is maximal independent. The algorithm needs n − m

nondeterministic steps, a number which is independent of the size of the database (but
dependent on Φ), and in each of its nondeterministic steps selects one possibility from a
set whose size is polynomial in the size of the database. So there is an equivalent PTIME
deterministic algorithm.

In the case when the set F of integrity constraints consists of only one FD per relation
the conflict hypergraph has a very simple form. It is a disjoint union of full multipartite
graphs. If this single dependency is a key dependency then the conflict graph is a union of
disjoint cliques. Because of this very simple structure we hoped that it would be possible, in
such a situation, to compute in polynomial time the consistent answers not only to ground
queries, but also to all conjunctive queries. As we are going to see now, this is only possibly
if the conjunctive queries are suitably restricted.

Theorem 3 Let F be a set of FDs, each dependency over a different relation among
P1, P2, . . . , Pk. Then for each closed simple conjunctive query Q, there exists a sentence
Q′ such that for every database instance r, r |=F Q iff r |= Q′. Consequently, DF,Q is in
PTIME.

Proof. We present the construction for k = 2 for simplicity; the generalization to an
arbitrary k is straightforward. Let P1 and P2 be two different relations of arity k1 and k2,
resp. Assume we have the following FDs: Y1 → Z1 over P1 and Y2 → Z2 over P2. Let ȳ1

be a vector of arity |Y1|, ȳ2 a vector of arity |Y2|, z̄1 and z̄′1 vectors of arity |Z1|, and z̄2

10

www.manaraa.com

and z̄′2 vectors of arity |Z2|. Finally, let w̄1, w̄
′
1, w̄

′′
1 (resp. w̄2, w̄

′
2, w̄

′′
2) be vectors of arity

k1 −|Y1|− |Z1| (resp. k2 −|Y2|− |Z2|). All of the above vectors consist of distinct variables.
The query Q is of the following form

∃ȳ1, z̄1, w̄1, ȳ2, z̄2, w̄2. [P1(ȳ1, z̄1, w̄1) ∧ P2(ȳ2, z̄2, w̄2) ∧ ϕ(ȳ1, z̄1, w̄1, ȳ2, z̄2, w̄2)].

Then, the query Q′ is as follows:

∃ȳ1, z̄1, w̄1, ȳ2, z̄2, w̄2∀z̄
′
1, w̄

′
1, z̄

′
2, w̄

′
2∃w̄

′′
1 , w̄

′′
2 [P1(ȳ1, z̄1, w̄1) ∧ P2(ȳ2, z̄2, w̄2) ∧ ϕ(ȳ1, z̄1, w̄1, ȳ2, z̄2, w̄2)

∧(P1(ȳ1, z̄
′
1, w̄

′
1) ∧ P2(ȳ2, z̄

′
2, w̄

′
2) ⇒ P1(ȳ1, z̄

′
1, w̄

′′
1) ∧ P2(ȳ2, z̄

′
2, w̄

′′
2) ∧ ϕ(ȳ1, z̄

′
1, w̄

′′
1 , ȳ2, z̄

′
2, w̄

′′
2))].

We show now that the above results are the strongest possible, since relaxing any of the
restrictions leads to co-NP-completeness. This is the case even though we limit ourselves
to key FDs.

3.3 One key dependency, nonsimple conjunctive query

Theorem 4 There exist a key FD f and a closed conjunctive query

Q ≡ ∃x, y, z. [R(x, y, c) ∧R(z, y, c′)],

for which D{f},Q is co-NP-complete.

Proof. Reduction from MONOTONE 3-SAT. The FD is A → BC. Let Φ = φ1 ∧ . . . φm ∧
ψm+1 . . . ∧ ψl be a conjunction of clauses, such that all occurrences of variables in φi are
positive and all occurrences of variables in ψi are negative. We build a database with
the facts R(i, p, c) if the variable p occurs in the clause ψi and R(i, p, c′) if the variable p
occurs in the clause φi. Now, there is an assignment which satisfies Φ if and only if there
exists a repair of the database in which Q is false. To show the ⇒ implication, select for
each clause φi one variable pi which occurs in this clause and whose value is 1 and for
each clause ψi one variable pi which occurs in ψi and whose value is 0. The set of facts
{R(i, pi, c) : i ≤ m} ∪ {R(i, pi, c

′) : m+ 1 ≤ i ≤ l} is a repair in which the query Q is false.
The ⇐ implication is even simpler.

3.4 Two key dependencies, single-atom query

By a bipartite edge-colored graph we mean a tuple G = 〈V,E,B,G〉 such that 〈V,E〉 is an
undirected bipartite graph and E = B ∪ G for some given disjoint sets B,G (so we think
that each of the edges of G has one of the two colors).

Definition 8 Let G = 〈V,E,B,G〉 be a bipartite edge-colored graph, and let M ⊂ E. We
say that M is maximal V-free if:

1. M is a maximal (w.r.t. inclusion) subset of E with the property that neither M(x, y)∧
M(x, z) nor M(x, y) ∧M(z, y) holds for any x, y, z.

2. M ∩B = ∅.

11

www.manaraa.com

We say that G has the max-V-free property if there exists M which is maximal V-free.

Lemma 1 Max-V-free is an NP-complete property of bipartite edge-colored graphs.

Proof. Reduction from 3-COLORABILITY. Let H = 〈U,D〉 be some undirected graph.
This is how we define the bipartite edge-colored graph GH:

1. V = {vε, v
′
ε : v ∈ U, ε ∈ {m,n, r, g, b}}, which means that there are 10 nodes in the

graph G for each node of H;

2. G(vm, v
′
r), G(vm, v

′
b), G(vn, v

′
b), G(vn, v

′
g) andG(vr, v

′
m),G(vb, v

′
m),G(vb, v

′
n),G(vg , v

′
n) hold

for each v ∈ U ;

3. B(vǫ, v
′
ε) holds for each v ∈ U and each pair ǫ, ε ∈ {r, g, b} such that ǫ 6= ε;

4. B(vε, u
′
ε) holds for each ε ∈ {r, g, b} and each pair u, v ∈ U such that D(u, v).

Suppose that H is 3-colorable. We fix a coloring of H and construct the set M . For each
v ∈ U : if the color of v is Red, then the edges G(vm, v

′
b), G(vn, v

′
g) and G(vb, v

′
m), G(vg , v

′
n)

are in M . If color of v is Green, then the edges G(vm, v
′
r), G(vn, v

′
b) and G(vr, v

′
m), G(vb, v

′
n)

are inM , and if the color of v is Blue, then the edgesG(vm, v
′
r), G(vn, v

′
g) andG(vr, v

′
m), G(vg , v

′
n)

are in M . It is easy to see that the set M constructed in this way is maximal V-free.
For the other direction, suppose that a maximal V-free set M exists in GH. Then, for

each v ∈ U there is at least one node among vr, vg, vb which does not belong to any G-edge
in M . Let vǫ be this node. Also, there is at least one such node (say, v′ε) among v′r, v

′
g, v

′
b.

Now, it follows easily from the construction of GH that if M is maximal V-free then ǫ = ε.
Let this ǫ be color of v in G. It is easy to check that the coloring defined in this way is a
legal 3-coloring of G.

Theorem 5 There is a set F of two key dependencies and a closed conjunctive query
Q ≡ ∃x, y. [R(x, y, b)], for which DF,Q is co-NP-complete.

Proof. The 2 dependencies are A → BC and B → AC. For a given bipartite edge-colored
graph G = 〈V,E,B,G〉 we build a database with the tuples (x, y, g) if G(x, y) holds in G
and (x, y, b) if B(x, y) holds in G. Now the theorem follows from Lemma 1 since a repair in
which the query Q is not true exists if and only if G has the max-V-free property.

3.5 One denial constraint

By an edge-colored graph we mean a tuple G = 〈V,E, P,G,B〉 such that 〈V,E〉 is a (directed)
graph and E = P ∪G∪B for some given pairwise disjoint sets P,G,B (which we interpret as
colors). We say that the edge colored graph G has the Y property if there are x, y, z, t ∈ E

such that E(x, y), E(y, z), E(y, t) hold and the edges E(y, z) and E(y, t) are of different
colors.

Definition 9 We say that the edge-colored graph 〈V,E, P,G,B〉 has the max-Y-free prop-
erty if there exists a subset M of E such that M ∩ P = ∅ and :

12

www.manaraa.com

1. 〈V,M,P ∩M,G ∩M,B ∩M〉 does not have the Y-property;

2. M is a maximal (w.r.t. inclusion) subset of E satisfying the first condition;

Lemma 2 Max-Y-free is an NP-complete property of edge-colored graphs.

Proof. By a reduction of 3SAT. Let Φ = φ1 ∧ φ2 ∧ . . . ∧ φl be conjunction of clauses. Let
p1, p2, . . . pn be all the variables in Φ. This is how we define the edge-colored graph GΦ:

1. V = {ai, bi, ci, di : 1 ≤ i ≤ n} ∪ {ei, fi, gi : 1 ≤ i ≤ l}, which means that there are 3
nodes in the new graph for each clause in Φ and 4 nodes for each variable.

2. P (ai, bi) and P (ej , fj) hold for each suitable i, j;

3. G(bi, di) and G(ej , gj) hold for each suitable i, j;

4. B(bi, ci) holds for each suitable i;

5. G(di, ej) holds if pi occurs positively in φj;

6. B(di, ej) holds if pi occurs negatively in φj ;

7. E = B ∪G ∪ P .

Now suppose that Φ is satisfiable, and that µ is the satisfying assignment. We define
the set M ⊂ E as follows. We keep in M all the G-colored edges from item 3 above. If
µ(pi) = 1 then we keep in M all the G edges leaving di (item 5). Otherwise we keep in M

all the B edges leaving di (item 6). Obviously, M ∩ P = ∅. It is also easy to see that M
does not have the Y-property and that it is maximal.

In the opposite direction, notice that if an M , as in Definition 9 does exist, then it must
contain all the G-edges from item 2 above - otherwise a P edge could be added without
leading to the Y-property. But this means that, for each i, M can either contain some (or
all) of the B-edges leaving di or some (or all) of the G-edges. In this sense M defines a
valuation of variables. Also, if M is maximal, it must contain, for each j, at least one edge
leading to ej . But this means that the defined valuation satisfies Φ.

Theorem 6 There exist a denial constraint f and a closed conjunctive query

Q ≡ ∃x, y. [R(x, y, p)],

for which D{f},Q is co-NP-complete.

Proof. The denial constraint f is:

∀x, y, z, s, s′, s′′ ¬[R(x, y, s) ∧R(y, z.s′) ∧R(y,w, s′′) ∧ s′ 6= s′′]

For a given edge-colored graph G = 〈V,E, P,G,B〉 we build a database with the tuples
R(x, y, g) if G(x, y) holds in G, with R(x, y, p) if P (x, y) holds in G and with R(x, y, b) if
B(x, y) holds in G. Now the theorem follows from Lemma 2 since a repair in which the
query Q is not true exists iff G has the max-Y-free property.

13

www.manaraa.com

4 Inclusion dependencies

Proposition 4 For every set of INDs I and L-sentence Φ, BI and DI,Φ are in PTIME.

Proof. For a given database instance r, a single repair is obtained by deleting all the tuples
violating I (and only those).

We consider now FDs and INDs together.

4.1 Single-key relations

We want to identify here the cases where both repair checking and computing consistent
query answers can be done in PTIME. The intuition is to limit the interaction between the
FDs and the INDs in the given set of integrity constraints in such a way that one can use
the PTIME results obtained for FDs in the previous section and in [ABC+03].

Lemma 3 Let IC = F ∪ I be a set of constraints consisting of a set of key FDs F and
a set of foreign key constraints I but with no more than one key per relation. Let r be a
database instance and r′ be the unique repair of r with respect to the foreign key constraints
in I. Then r′′ is a repair of r w.r.t. IC if and only if it is a repair of r′ w.r.t. F .

Proof. The only thing to be noticed here is that repairing r′ with respect to key constraints
does not lead to new inclusion violations. This is because the set of key values in each
relation remains unchanged after such a repair (which is not necessarily the case if we have
relations with more than one key).

Corollary 1 Under the assumptions of Lemma 3, BIC is in PTIME.

Proof. Follows from Proposition 2.
The repairs w.r.t. IC = F ∪I of r are computed by (deterministically) repairing r w.r.t.

I and then nondeterministically repairing the result w.r.t. F (as described in the previous
section).

We can also transfer the PTIME results about consistent query answers obtained for
FDs only.

Corollary 2 Let Φ a quantifier-free L-sentence or a simple conjunctive closed L-query.
Then under the assumptions of Lemma 3, DIC,Φ is in PTIME.

Proof. From Theorem 2 and Theorem 3.
Unfortunately, the cases identified above are the only ones we know of in which both

repair checking and consistent query answers are in PTIME.

4.2 Acyclic inclusion dependencies

For acyclic INDs (and arbitrary FDs), the repair checking problem is still in PTIME. Sur-
prisingly, consistent query answers becomes in this case a co-NP-hard problem, even in the
case of key FDs and primary key foreign key constraints. If we relax any of the assump-
tions of Lemma 3, the problem of consistent query answers becomes intractable, even under
acyclicity.

14

www.manaraa.com

Definition 10 [AHV95] Let I be a set of INDs over a database schema R. Consider a
directed graph whose vertices are relations from R and such that there is an edge E(P,R) in
the graph if and only if there is an IND of the form P [X] ⊆ R[Y] in I. A set of inclusion
dependencies is acyclic if the above graph does not have a cycle.

Theorem 7 Let IC = F ∪ I be a set of constraints consisting of a set of FDs F and an
acyclic set of INDs I. Then BIC is in PTIME.

Proof. First compare r and r′ on relations which are not on the left-hand side of any IND
in I. Here, r′ is a repair if and only if the functional dependencies are satisfied in r′ and if
adding to it any additional tuple from r would violate one of the functional dependencies.
Then consider relations which are on the left-hand side of some INDs, but the inclusions
only lead to already checked relations. Again, r′ is a repair of those relations if and only if
adding any new tuple (i.e. any tuple from r but not from r′) would violate some constraints.
Repeat the last step until all the relations are checked.

The above proof yields a nondeterministic PTIME procedure for computing the repairs
w.r.t. IC = F ∪ I.

To our surprise, Theorem 7 is the strongest possible positive result. The problem of
consistent query answers is already intractable, even under additional restrictions on the
FDs and INDs. To see this let us start by establishing NP-completeness of the maximal
spoiled-free problem.

By an instance of the maximal spoiled-free problem we will mean G = 〈V, V1, V2, V3, S,E〉
such that:

1. 〈V,E〉 is a ternary undirected hypergraph (so V is a set of vertices and E is a set of
triangles);

2. V1, V2, V3 are pairwise disjoint;

3. V1 ∪ V2 ∪ V3 = V ;

4. Relation E is typed: if E(a, b, c) holds in G then a ∈ V1, b ∈ V2 and c ∈ V3;

5. S ⊆ V1 (S will be called set of spoiled vertices).

We will consider maximal (with respect to inclusion) sets of disjoint triangles in G. We
call a triangle spoiled if one of its vertices is spoiled. The maximal spoiled-free problem is
defined as the problem of deciding, for a given instance G = 〈V, V1, V2, V3, S,E〉, if there
exists a maximal set T ⊂ E of disjoint triangles, such that none of the triangles in T is
spoiled. It is easy to get confused here, so let us explain that the problem we are considering
here is not the existence of a set of disjoint triangles, which would be maximal in the class
of sets not containing a spoiled triangle: such a set of course always exists. The problem
we consider is the existence of a set of disjoint triangles in G which is not only maximal but
also does not contain a spoiled triangle.

Lemma 4 The maximal spoiled-free problem is NP-complete.

15

www.manaraa.com

Proof. By a reduction of 3-colorability. Let H = 〈U,D〉 be some undirected graph. We
are going to construct the instance of the maximal spoiled-free problem GH. The construc-
tion is a little bit complicated, and we hope to simplify the presentation by the following
convention:

Each vertex in V1 belongs to exactly one triangle in E. So a triangle is fully specified
by its vertex in V2, its vertex in V3 and by the information if it is spoiled or not.

Now, for each vertex v in U we will have vertices vr, vg, vb, vp, vq in V2 and vertices
v′r, v

′
g, v

′
b, v

′
p, v

′
q in V3. The only nonspoiled triangles will be the defined by the following pairs:

[vr, v
′
p], [vg, v

′
p], [vg, v

′
q], [vb, v

′
q], [vp, v

′
r], [vp, v

′
g], [vq, v

′
g], [vq, v

′
b] (so we have 8 nonspoiled

triangles for each vertex in U).
There are two kinds of spoiled triangles. For each v ∈ U , and for each pair ǫ, ε ∈ {r, g, b}

such that ǫ 6= ε there is a spoiled triangle [vǫ, v
′
ε] in G. For each v, u ∈ U , such that D(v, u)

holds in H, and for each ǫ ∈ {r, g, b} there is a spoiled triangle [vǫ, uǫ] in G.
Now we need to show that H is 3-colorable if and only if there exists a maximal set

T ⊂ E of disjoint triangles, such that none of the triangles in T is spoiled.
Let us start from the ⇒ direction, which is simple. Consider a coloring of H with colors

r, g and b. Now take T as a set containing, for each vertex v of H with some color ǫ, all
nonspoiled triangles of the form [vα, v

′
β] where neither α nor β equals to ǫ. Obviously, T

defined in this way, does not contain spoiled triangles. A simple analysis shows that it is
also maximal.

For the other direction suppose that there is a set T of disjoint triangles in G which is
maximal and only contains nonspoiled triangles. It is easy to see that for each v exactly
one of the vertices vr, vg, vb is not in any triangle in T , and that also among v′r, v

′
g, v

′
b there

is exactly one which is not in any triangle in T . If they were different, in the sense that first
of them were vε and the second v′ǫ, for ǫ 6= ε, then a spoiled triangle [vε, v

′
ǫ] could be added

to T what contradicts its maximality. So they are equal, and in a natural way they define
a color of v. Now we need to prove that the coloring of H defined in this way is a legal one.
But if D(u, v) holds in H then there is spoiled triangle [vǫ, uǫ] in G for each ǫ ∈ {r, g, b}. So
if the colors of v and u were both equal to some ǫ, then we could add this spoiled triangle,
and T would not be maximal.

Theorem 8 There exist a database schema, a set IC of integrity constraints consisting of
key FDs and of an acyclic set of primary foreign key constraints, and a ground atomic query
Φ such that DIC,Φ is co-NP-hard.

Proof. The schema consists of a unary relation P , a binary relation Q(Q1, Q2) and of a
ternary relation R(R1, R2, R3). The columns Q1,R1,R2,R3 are keys, with Q1 and R1 being
the primary keys. The foreign key dependencies are P ⊆ Q1 and Q2 ⊆ R1. For a given
instance G of the maximal spoiled-free problem we will construct a database instance r, and
a query Φ such that G has the maximal spoiled-free property if and only if there is a repair
r′ of r with respect to IC such that Φ is not true in r′.

We define the relation P as a single fact P (a). The relation Q is defined as a set of facts
{Q(a, s) : s ∈ S}, where S is the set of spoiled vertices from G. Finally, R is the hypergraph
from G. The query Φ is P (a).

The repairs of R with respect to the key dependencies correspond to maximal sets of
disjoint triangles in G. If G has the maximal spoiled-free property then there exists a repair

16

www.manaraa.com

of R which does not contain any tuple of the form R(s, u, v) with s ∈ S. But then the only
way to repair Q is it take the empty relation, and, consequently, the only way to repair P is
to take the empty relation. So if G has the maximal spoiled-free property then Φ indeed is
not true in all repairs. For the other direction notice that if if each repair of R it is a tuple
of the form R(s, u, v) with s ∈ S then each repair of Q is nonempty and in consequence
each repair of P consists of the single atom P (a), so then Φ is indeed true in all repairs.

4.3 Relaxing acyclicity

We show here that relaxing the acyclicity assumption in Theorem 7 leads to the intractability
of the repair checking problem (and thus also the problem of consistent query answers), even
though alternative restrictions on the integrity constraints are imposed.

4.3.1 One FD, one IND

Theorem 9 There exist a database schema and a set IC of integrity constraints, consisting
of one FD and one IND, such that BIC is co-NP-hard.

Proof. We will check here whether the empty set is a repair. The database schema consists
of one relation R(A1, A2, A3, A4) and the constraints in IC are A1 → A2 and A3 ⊆ A4.

Consider a propositional formula Φ = φ1 ∧ φ2 ∧ . . . φm, where φi are clauses. Let rΦ
consist of the facts R(pj , 0, φi, φi+1) such that pj occurs negatively in φi and of the facts
R(pj, 1, φi, φi+1) such that pj occurs positively in φi where the addition i + 1 is meant
modulo the number m of clauses in Φ. We want to show that ∅ is a repair of rΦ with
respect to IC if and only if Φ is not satisfiable.

For the only if direction notice that if ρ is a satisfying assignment of Φ then the subset
of rΦ consisting of all the facts of the form R(p, ρ(p), φi, φi+1) is a repair, and obviously ∅
is not a repair then.

For the opposite direction first notice that a repair r′ of rΦ which is nonempty contains
some fact of the form R(, , φi, φi+1). So, by inclusion A3 ⊆ A4 it must also contain some
fact of the form R(, , φi−1, φi). By induction we show that

(*) for every clause φj from Φ there is a fact of the form R(, , φj , φj+1) in r′.

Now we make use of the functional dependency A1 → A2. If r′ is a repair of rΦ then for
each variable p there are either only facts of the form R(p, 0, ,) in r′ or only facts of the
form R(p, 1, ,). Define the assignment ρ(p) as 1 if there is some fact of the form R(p, 1, ,)
in r′ and as 0 otherwise. It follows from the construction of rΦ that if a clause of the form
R(, , φj , φj+1) is in r′ then ρ satisfies φj. Together with (*) this completes the proof.

4.3.2 Key FDs and foreign key constraints

Theorem 10 There exist a database schema and a set IC of integrity constraints, consist-
ing of key FDs and foreign key constraints, such that BIC is co-NP-hard.

Proof. Again we consider checking whether the empty set is a repair. The schema consists
of 10 binary relations: R(A,B), Ri,j(Ai,j, Bi,j) with 1 ≤ i, j ≤ 3. For each pair (i, j) both

17

www.manaraa.com

the key dependencies Ai,j → Bi,j and Bi,j → Ai,j are in IC, with Ai,j as the primary key of
the respective relation. The relation R is constrained by a single key dependency B → A.
The inclusion constraints are Bi,j ⊆ B, for each pair i, j and A ⊆ Ai,j, also for each pair
i, j.

Consider a propositional formula Φ = φ1 ∧φ2∧ . . . φm, where φi are clauses. We assume
that none of the clauses in Φ contains more than 3 literals, that each variable occurs at most
3 times in Φ, and that the number of variables in Φ is equal to the number m of clauses in
the formula. It is easy to prove that satisfiability is NP-complete even for formulae of this
kind. For the formula Φ we built a database instance rΦ: in the the relation R we remember
the formula Φ: it consists of such pairs (w,φ) that w is a literal, φ is a clause from Φ and
w occurs in φ. The definitions of the relations Ri,j are a little bit more complicated. The
relation Ri,j consists of 2m tuples (pl, φs(i,j,l)), and (¬pl, φs(i,j,l)), with s still to be defined,
will be a function from {1, 2, 3}×{1, 2, 3}×{1, 2, . . . m} to {1, 2, . . . m} and, more precisely,
it is going to be a permutation of {1, 2, . . . m} for every fixed pair (i, j). Define s(i, j, l) as
n if pl (or ¬pl) occurs in the clause φn+1 (where addition is modulo the number of clauses
m), if pl is the ith variable in this clause, and if it is jth occurrence of pl in Φ. Now, for
each (i, j) let s(i, j,) be any permutation consistent with the above definition. It follows
directly from our construction that:

Lemma 5 For each clause φn from Φ and for each variable p occurring in φn there is a
relation Ri,j such that the tuples (p, φn−1) and (¬p, φn−1) are in Ri,j .

We want to show that ∅ is a repair of rΦ with respect to IC if and only if Φ is not
satisfiable.

The only if direction is simple. Assume that Φ is satisfiable and let ρ be a satisfying
assignment. In each tuple in each of the relations R,Ri,j in rΦ the first argument is always a
literal. Let r′ be a subset of rΦ consisting of such facts R(w,φ) or Ri,j(w,φ) that ρ(w) = 1.
The key constraints for Ri,j are satisfied in r′. The inclusion constraints Bi,j ⊆ B are
satisfied because, since ρ was an assignment satisfying Φ, B = {φ1, φ2, . . . φm}. Also the
inclusions A ⊆ Ai,j hold. But the key dependency B → A does not need to hold in r′ (this
is because there is possibly more than one literal w in some clause such that ρ(w) = 1).
To construct a nonempty repair of rΦ take now r′′ built with the same relations Ri,j as r′

and with relation R being the result of selecting from the relation R in r′ exactly one tuple
(w,φ) for each φ.

The if direction is more complicated. If r′ is a repair of rΦ then, in each of the relations
Ri,j, for each clause s(i, j, l) at most one of the tuples (pl, φs(i,j,l)) and (¬pl, φs(i,j,l)) can be
in Ri,j. This implies that at most one of the literals pl,¬pl can be in Ai,j. But A ⊆ Ai,j

and, since Φ is not satisfiable, there must be a clause φl such that none of the literals from
φl is in A. This means that φl is not in B. Consider the clause φl+1. By Lemma 5 for each
variable p from φl+1 there is a relation Ri,j such that the tuples (p, φl) and (¬p, φl) are in
Ri,j in rΦ. But, by the inclusion constraints, each of the Bi,j should be a subset of B, so
since φl is not in B in r′ it is also not in any of the Bi,j in r′. While removing φl from Bi,j

we also delete the variables occurring in a tuple of Ri,j together with φl. This means that
for each variable p from the clause φl+1 there is a relation Ri,j such that neither p nor ¬p is
in Ai,j . But A is a subset of each of the Ai,j. This means that none of the literals from φl+1

18

www.manaraa.com

can be in A. So φl+1 cannot be in B! Now, using this argument m times we can remove all
the tuples from the relations, thus proving that r′ is empty.

4.4 Arbitrary FDs and INDs

Theorem 11 The repair checking problem for arbitrary FDs and INDs is co-NP-complete.

Proof. Co-NP-hardness was established earlier in this section. The membership in co-NP
follows from the definition of repair.

Theorem 12 The consistent query answers problem for arbitrary FDs and INDs is Πp
2-

complete.

Proof. The membership in Πp
2 follows from the definition of consistent query answer. We

show Πp
2-hardness below. Consider a quantified boolean formula φ of the form

∀p1, p2, . . . pk∃q1, q2, . . . ql ψ

where ψ is quantifier-free and equals to ψ1 ∧ ψ2 ∧ . . . ψm, where ψi are clauses. We will
construct a database instance rφ, over a schema with a single relation R(A,B,C,D), such
that R(a, a, ψ1, a) is a consistent answer if and only if φ is true. The integrity constraints
will be A→ B and C ⊆ D.

There are 3 kinds of tuples in rφ. For each occurence of a literal in ψ we have one tuple
of the first kind (we adopt the convention that ψm+1 is ψ1):

• R(pi, 1, ψj , ψj+1) if pi occurs positively in ψj,

• R(qi, 1, ψj , ψj+1) if qi occurs positively in ψj ,

• R(pi, 0, ψj , ψj+1) if pi occurs negatively in ψj,

• R(qi, 0, ψj , ψj+1) if qi occurs negatively in ψj .

For each universally quantified variable pi we have two tuples of the second kind:
R(pi, 1, ai, ai) andR(pi, 0, ai, ai). Finally, there is just one tuple of the third kind: R(a, a, ψ1, a).

Let us first show that if φ is false then R(a, a, ψ1, a) is not a consistent answer. Let σ
be such a valuation of the variables p1, p2, . . . pk that the formula σ(φ) (with free variables
q1, q2, . . . ql is not satisfiable. It will be enough to show that the set sσ of all the tuples from
rφ which are of the form R(p1, σ(pi), ai, ai) is a repair. The set sσ is consistent. So if it is
not a repair then another consistent subset s ⊃ sσ of rφ must exist. Due to the FD s does
not contain any tuple of the second kind not being already in sσ. So, there must be some
tuple of the first or the third kind in s. But that means (due to the IND) that for each ψj

there is either some tuple of the form R(pi, σ(pi), ψj , ψj+1) in s , or some tuple of the form
R(pi, εi, ψj , ψj+1), where εi ∈ {0, 1}. Due to the FD, for each qi there can be at most one
such εi. Define σ̄(qi) = εi. Then σ̄(σ(φ)) = 1 which is impossible.

For the opposite direction suppose that φ is true but R(a, a, ψ1, a) is not a consistent
answer. The last means that there exists a repair s of rφ such that no tuple of the form

19

www.manaraa.com

R(, , ψ1,) can be found in s. But this implies that there are no tuples of the first kind in
s, and so s only consists of some tuples of the second kind. Due to the FD there exists a
valuation σ such that s consists of all the tuples of the second kind which are of the form
R(p1, σ(pi), ai, ai). Since φ is true, there exists a valuation σ̄ of variables q1, q2, . . . ql such
that σ̄(σ(φ)) = 1. But then the set s′ consisting of all the tuples from s, R(a, a, ψ1, a),
and all the tuples of the first kind which are either of the form R(pi, σ(pi), ψj , ψj+1) or
R(qi, σ̄(qi), ψj , ψj+1) is consistent, which contradicts the assumption that s is a repair.

5 Related work

We only briefly survey the related work here. A more comprehensive discussion can be
found in [ABC99, BC03].

There are several similarities between our approach to consistency handling and those
followed by the belief revision/update community [GR95]. Database repairs (Definition 4)
coincide with revised models defined by Winslett in [Win88]. The treatment in [Win88]
is mainly propositional, but a preliminary extension to first order knowledge bases can be
found in [CW94]. Those papers concentrate on the computation of the models of the revised
theory, i.e., the repairs in our case. Comparing our framework with that of belief revision,
we have an empty domain theory, one model: the database instance, and a revision by a set
of ICs. The revision of a database instance by the ICs produces new database instances, the
repairs of the original database. The complexity of belief revision (and the related prob-
lem of counterfactual inference which corresponds to our computation of consistent query
answers) in the propositional case was exhaustively classified by Eiter and Gottlob [EG92].
Among the constraint classes considered in the current paper, only denial constraints can
be represented propositionally by grounding. However, such grounding results in an un-
bounded update formula, which prevents the transfer of any of the PTIME upper bounds
from [EG92] into our framework. Similarly, their lower bounds require different kinds of
formulas from those that we use.

The need to accommodate violations of functional dependencies is one of the main
motivations for considering disjunctive databases [INV91, vdM98] and has led to various
proposals in the context of data integration [AKWS95, BKMS92, Dun96, LM96]. There
seems to be an intriguing connection between relation repairs w.r.t. FDs and databases with
disjunctive information [vdM98]. For example, the set of repairs of the relation Person from
Example 6 can be represented as a disjunctive database D consisting of the formulas

Person(Brown,Amherst, 115 Klein) ∨ Person(Brown,Amherst, 120 Maple)

and
Person(Green,Clarence, 4000 Transit).

Each repair corresponds to a minimal model of D and vice versa. We conjecture that the
set of all repairs of an instance w.r.t. a set of FDs can be represented as a disjunctive table
(with rows that are disjunctions of atoms with the same relation symbol). The relationship
in the other direction does not hold, as shown by the folowing example [ABC+03].

Example 7 The set of minimal models of the formula

(p(a1, b1) ∨ p(a2, b2)) ∧ p(a3, b3)

20

www.manaraa.com

cannot be represented as a set of repairs of any set of FDs. 2

Known tractable classes of first-order queries over disjunctive databases typically involve
conjunctive queries and databases with restricted OR-objects [INV91, IvdMV95]. In some
cases, like in Example 6, the set of all repairs can be represented as a table with OR-objects.
But in general this is not the case [ABC+03].

Example 8 Consider the following set of FDs F = {A → B,A→ C}, which is in BCNF.
The set of all repairs of the instance {(a1, b1, c1), (a1, b2, c2)} cannot be represented as a
table with OR-objects. 2

The relationship in the other direction, from tables with OR-objects to sets of repairs, also
does not hold.

Example 9 Consider the following table with OR-objects:

OR(a,b) c
a OR(c,d)

It does not represent the set of all repairs of any instance under any set of FDs. 2

In general, a correspondence between sets of repairs and tables with OR-objects holds only
in the very restricted case when the relation is binary, say R(A,B), and there is one FD
A → B. The paper [IvdMV95] contains a complete classification of the complexity of
conjunctive queries for tables with OR-objects. It is shown how the complexity depends on
whether the tables satisfy various schema-level criteria, governing the allowed occurrences
of OR-objects. Since there is no exact correspondence between tables with OR-objects
and sets of repairs of a given database instance, the results of [IvdMV95] do not directly
translate to our framework, and vice versa.

There are several proposals for language constructs specifying nondeterministic queries
that are related to our approach (witness [AHV95], choice [GGSZ97, GP98, GSZ95]). Es-
sentially, the idea is to construct a maximal subset of a given relation that satisfies a
given set of functional dependencies. Since there is usually more than one such subset, the
approach yields nondeterministic queries in a natural way. Clearly, maximal consistent sub-
sets (choice models [GGSZ97]) correspond to repairs. Datalog with choice [GGSZ97] is, in
a sense, more general than our approach, since it combines enforcing functional dependen-
cies with inference using Datalog rules. Answering queries in all choice models (∀G-queries
[GSZ95]) corresponds to our notion of computation of consistent query answers (Definition
6). However, the former problem is shown to be co-NP-complete and no tractable cases are
identified. One of the sources of complexity in this case is the presence of Datalog rules,
absent from our approach. Moreover, the procedure proposed in [GSZ95] runs in exponen-
tial time if there are exponentially many repairs, as in Example 6. Also, only conjunctions
of literals are considered as queries in [GSZ95].

A purely proof-theoretic notion of consistent query answer comes from Bry [Bry97].
This notion, described only in the propositional case, corresponds to evaluating queries
after all the tuples involved in inconsistencies have been eliminated. The paper [ABC99]
introduced the notions of repair and consistent query answer used in the current research.
It proposed computing consistent query answers through query transformation. The papers

21

www.manaraa.com

[ABC01, ABC+03] studied the computation of consistent query answers in the context of
FDs and scalar aggregation queries.

Wijsen [Wij03] studied the problem of consistent query answering in the context of
universal constraints. In contrast to Definition 4, he considers repairs obtained by modifying
individual tuple components. Notice that a modification of a tuple component cannot be
necessarily simulated as a deletion followed by an insertion, because this might not be
minimal under set inclusion. Wijsen proposes to represent all the repairs of an instance
using a single trustable tableau. From this tableau, answers to conjunctive queries can
be efficiently obtained. It is not clear, however, what is the computational complexity of
constructing the tableau, or even whether the tableau is always of polynomial size.

Representing repairs as stable models of logic programs with disjunction and classical
negation has been proposed in [ABC00, GGZ01]. Those papers consider computing consis-
tent answers to first-order queries. While the approach is very general, no tractable cases
beyond those already implicit in the results of [ABC99] are identified. The semantics of ref-
erential integrity actions are captured using stable models of logic programs with negation
in [LML97].

It is interesting to contrast our results in Section 4 with the classical results about the
implication problem for FDs and INDs [AHV95]. This problem is undecidable in general
but becomes decidable under suitable restrictions on INDs. For instance, it is decidable in
PTIME if the INDs are unary and in EXPTIME if the INDs are acyclic. The problems
discussed in our paper are all in Πp

2 (Section 4). The role the syntactic restrictions play
in this context is different. The restriction to unary INDs is not helpful, c.f., Theorem 11.
The restriction to acyclic INDs makes the repair checking problem tractable (Theorem 7)
but not so the problem of consistent query answers (Theorem 8).

In [MR92], several classes of FDs and INDs were identified for which the implication
problem does not exhibit any interaction between the FDs and the INDs. I.e., a set of
constraints implies an FD (resp. an IND) iff the FDs (resp. the INDs) in this set imply
it. Unfortunately, the syntactic restrictions on constraints that guarantee no interaction
in the above sense do not play a similar role in our context. It seems that the notion of
maximality present in the repair definition forces a relationship between the FDs and the
INDs that is much tighter than the one implicit in the implication problem.

In [MM90, MR92], it is investigated what kind of relational schemas and integrity con-
straints can result from mapping an Entity-Relationship schema (this is a common way of
designing relational schemas). Acyclicity of INDs is a necessary requirement, thus repair
checking is tractable in this case. However, it turns out that the schema from Theorem 8
could result from such a mapping. Thus, even restricting the relational schemas to those
that correspond to Entity-Relationship schemas does not guarantee the tractability of con-
sistent query answers.

6 Conclusions and future work

In this paper we have investigated the computational complexity issues involved in minimal-
change integrity maintenance using tuple deletions, in the presence of denial constraints
and inclusion dependencies. We have identified several tractable cases and shown that
generalizing them leads to intractability.

22

www.manaraa.com

We envision several possible directions for future work. First, one can consider various
preference orderings on repairs. Such orderings are often natural and may lead to further
tractable cases. Some preliminary work in this direction is reported in [GGZ01]. Second, a
natural scenario for applying the results developed in this paper is query rewriting in the
presence of distributed data sources [DGL00, Hal01, Len02]. Recent work in this area has
started to address the issues involved in data sources being inconsistent [BCCG02, LLR02].
Finally, as XML is playing an increased role in data integration [PV99, LPV00, DHW01],
it would be interesting and challenging to develop the appropriate notions of repair and
consistent query answer in the context of XML databases. Recent integrity constraint
proposals for XML include [BDF+01, FS00, FKS01].

References

[ABC99] M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsis-
tent Databases. In ACM Symposium on Principles of Database Systems, pages
68–79, 1999.

[ABC00] M. Arenas, L. Bertossi, and J. Chomicki. Specifying and Querying Database
Repairs Using Logic Programs with Exceptions. In International Conference on
Flexible Query Answering Systems, pages 27–41. Springer-Verlag, 2000.

[ABC01] M. Arenas, L. Bertossi, and J. Chomicki. Scalar Aggregation in FD-Inconsistent
Databases. In International Conference on Database Theory, pages 39–53.
Springer-Verlag, LNCS 1973, 2001.

[ABC+03] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad.
Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science,
2003. Special issue: selected papers from ICDT 2001, to appear.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[AKWS95] S. Agarwal, A. M. Keller, G. Wiederhold, and K. Saraswat. Flexible Rela-
tion: An Approach for Integrating Data from Multiple, Possibly Inconsistent
Databases. In IEEE International Conference on Data Engineering, 1995.

[BC03] L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases. Springer-Verlag, 2003. To appear.

[BCCG02] L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez. Consistent Answers
from Integrated Data Sources. In International Conference on Flexible Query
Answering Systems, Copenhagen, Denmark, October 2002. Springer-Verlag.

[BDF+01] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. In
International World Wide Web Conference, 2001. Full version to appear in
Computer Networks.

23

www.manaraa.com

[BKMS92] C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining Knowledge
Bases Consisting of First-Order Theories. Computational Intelligence, 8:45–71,
1992.

[Bry97] F. Bry. Query Answering in Information Systems with Integrity Constraints.
In IFIP WG 11.5 Working Conference on Integrity and Control in Information
Systems. Chapman &Hall, 1997.

[CH80] A. K. Chandra and D. Harel. Computable Queries for Relational Databases.
Journal of Computer and System Sciences, 21:156–178, 1980.

[CM02] J. Chomicki and J. Marcinkowski. On the Computational Complexity of Consis-
tent Query Answers. Technical Report arXiv:cs.DB/0204010, arXiv.org e-Print
archive, April 2002.

[CM77] A. Chandra and P. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Databases. In ACM SIGACT Symposium on the Theory of Comput-
ing, pages 77–90, 1977.

[CW94] T. Chou and M. Winslett. A Model-Based Belief Revision System. Journal of
Automated Reasoning, 12:157–208, 1994.

[Dat81] C. J. Date. Referential Integrity. In International Conference on Very Large
Data Bases, pages 2–12, 1981.

[DGL00] O.M. Duschka, M.R. Genesereth, and A.Y. Levy. Recursive Query Plans for
Data Integration. Journal of Logic Programming, 43(1):49–73, 2000.

[DHW01] D. Draper, A. Halevy, and D. Weld. The Nimble XML Data Integration System.
In ACM SIGMOD International Conference on Management of Data, 2001.

[Dun96] Phan Minh Dung. Integrating Data from Possibly Inconsistent Databases. In
International Conference on Cooperative Information Systems, Brussels, Bel-
gium, 1996.

[EG92] T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base
Revision, Updates, and Counterfactuals. Artificial Intelligence, 57(2-3):227–
270, 1992.

[FKS01] W. Fan, G. Kuper, and J. Simeon. A Unified Constraint Model for XML. In
International World Wide Web Conference, 2001. Full version to appear on
Computer Networks.

[FS00] W. Fan and J. Simeon. Integrity Constraints for XML. In ACM Symposium on
Principles of Database Systems, 2000. Full version to appear in JCSS.

[GGSZ97] F. Giannotti, S. Greco, D. Sacca, and C. Zaniolo. Programming with Non-
determinism in Deductive Databases. Annals of Mathematics and Artificial
Intelligence, 19(3-4), 1997.

24

http://arXiv.org/abs/cs/0204010

www.manaraa.com

[GGZ01] G. Greco, S. Greco, and E. Zumpano. A Logic Programming Approach to the
Integration, Repairing and Querying of Inconsistent Databases. In International
Conference on Logic Programming, pages 348–364. Springer-Verlag, LNCS 2237,
2001.

[GP98] F. Giannotti and D. Pedreschi. Datalog with Non-deterministic Choice Com-
putes NDB-PTIME. Journal of Logic Programming, 35:75–101, 1998.

[GR95] P. Gärdenfors and H. Rott. Belief Revision. In D. M. Gabbay, J. Hogger, C,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 4, pages 35–132. Oxford University Press, 1995.

[GSZ95] S. Greco, D. Sacca, and C. Zaniolo. Datalog Queries with Stratified Negation
and Choice: from P to DP . In International Conference on Database Theory,
pages 82–96. Springer-Verlag, 1995.

[Hal01] A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal,
10(4):270–294, 2001.

[INV91] T. Imieliński, S. Naqvi, and K. Vadaparty. Incomplete Objects - A Data Model
for Design and Planning Applications. In ACM SIGMOD International Con-
ference on Management of Data, pages 288–297, Denver, Colorado, May 1991.

[IvdMV95] T. Imieliński, R. van der Meyden, and K. Vadaparty. Complexity Tailored De-
sign: A New Design Methodology for Databases With Incomplete Information.
Journal of Computer and System Sciences, 51(3):405–432, 1995.

[Len02] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM Symposium
on Principles of Database Systems, 2002. Invited talk.

[LLR02] D. Lembo, M. Lenzerini, and R. Rosati. Source Inconsistency and Incomplete-
ness in Data Integration. In Workshop on Nonmonotonic Reasoning (NMR’02),
Toulouse, France, 2002.

[LM96] J. Lin and A. O. Mendelzon. Merging Databases under Constraints. Interna-
tional Journal of Cooperative Information Systems, 7(1):55–76, 1996.

[LML97] B. Ludäscher, W. May, and G. Lausen. Referential Actions as Logical Rules.
In ACM Symposium on Principles of Database Systems, pages 217–227, 1997.

[LPV00] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. Navigation-Driven Eval-
uation of Virtual Mediated Views. In International Conference on Extending
Database Technology, 2000.

[MM90] V. M. Markowitz and J.A. Makowsky. Identifying Extended Entity-Relationship
Object Structures in Relational Schemas. IEEE Transactions on Software En-
gineering, 16(8):777–790, 1990.

[MR92] H. Mannila and K-J. Räihä. The Design of Relational Databases. Addison-
Wesley, 1992.

25

www.manaraa.com

[MS02] Jim Melton and Alan R. Simon. SQL:1999 Understanding Relational Language
Components. Morgan Kaufmann, 2002.

[PV99] Y. Papakonstantinou and V. Vassalos. Rewriting Queries Using Semistructured
Views. In ACM SIGMOD International Conference on Management of Data,
1999.

[Var82] M. Y. Vardi. The Complexity of Relational Query Languages. In ACM Sym-
posium on Theory of Computing, pages 137–146, 1982.

[vdM98] R. van der Meyden. Logical Approaches to Incomplete Information: A Survey.
In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, chapter 10. Kluwer Academic Publishers, Boston, 1998.

[Wij03] J. Wijsen. Condensed Representation of Database Repairs for Consistent Query
Answering. In International Conference on Database Theory, 2003.

[Win88] M. Winslett. Reasoning about Action using a Possible Models Approach. In
National Conference on Artificial Intelligence, 1988.

26

